Ryton® PPS Injection Molding

Ryton® PPS compounds are easily processed on conventional reciprocating screw injection molding machines using standard molding practices for filled engineering plastics. Abrasion resistant materials are recommended to reduce wear incurred by the glass and mineral fillers. Maximum possible injection pressure is recommended to achieve optimum part packing. Heated molds are recommended to achieve sufficient crystallinity to ensure optimum high-temperature dimensional stability of the part. Listed below are general suggestions for injection molding Ryton® PPS compounds.

Melt or Stock Temperature
The processing temperature range for Ryton® PPS is 304 – 343 °C (580 – 650 °F). Typically, it is suggested that the melt temperature, as measured by pyrometer, be kept on the low to medium side, in the range of 316 – 329 °C (600 – 625 °F).

Mold Temperature
For a crystalline part, the mold temperature needs to be 135 – 149°C (275 – 300°F), and is best controlled by using circulated hot oil.

Material Drying
• Dry at 135 °C to 149 °C (275 °F to 300 °F) for 2 to 4 hours prior to processing.
• Hopper driers and/or desiccant driers are suggested, but not required; – 40 °C (–40 °F) dew point recommended, if used.
• Moisture content < 0.1 %

Machine Settings
• See Barrel Temperature Profile Above
• Mold Temperature 135 °C to 149 °C (275 °F to 300 °F) recommended for optimum part crystallinity
• Back Pressure 3.5 – 7.0 bar (50 – 100 psig)
• Screw Speed 100 rpm
• Cushion 2.5 – 6.5 mm (0.10 – 0.25 inch)

Equipment Requirements
• Abrasion resistant barrel (Xaloy 801)
• 16:1 to 20:1 L/D screw with 2.5:1 compression Ratio; hardened flights (Stellite or Colmonoy 6)
• Abrasion resistant ring type check valve
• Reverse taper (Nylon Tip) or automatic positive shut-off nozzle
• Mold steel Rc 60 or higher (A2 or D2)
• Shot size 25 – 75 %
• Clamp tonnage 2.5 – 4.0 tons/in²
Injection speed: A medium to fast fill speed should work well, depending on wall thickness. Typical fill time is in the range of 0.5 to 2.0 seconds for small to medium sized parts with larger parts possibly requiring longer fill times. If burning or flash occurs, check vents or slow injection speed. Injection Pressure should be high enough to maintain the set injection speed.

Injection boost pressure: Set as high as required to achieve the injection speed set. Velocity control during injection part fill should be utilized with a transfer to pressure control for part pack and hold. This requires the Boost pressure to be set higher than the peak pressure required to fill, usually by several hundred psi. Be sure not to pressure limit the process.

Injection pack/hold pressure: Typically set at 60 to 75% of peak injection pressure. Be sure to set high enough to achieve maximum cavity pressure in the part.

First stage timer: Switching on position or cavity pressure is recommended, typically 95 to 99% cavity fill. The first stage timer should be set slightly longer than the fill time.

Second stage timer: Typical Pack and Hold times required when processing Ryton® PPS compounds is in the range of 3 to 8 seconds for small to medium sized parts, and 8 to 12 seconds for larger or thicker walled parts. However, this is dependent on gate size, so inspect parts for sinks or porosity and check part weight at various hold times to get the proper setting. One or two pressure transducer(s) in a mold cavity typically provides the most accurate data for optimum part packing and gate freeze determination.

Cooling time: Usually longer cooling times are required for Ryton® PPS compounds because of the hotter mold temperatures used. Most of the time 15 to 30 seconds is adequate for small to medium sized parts, with 30 seconds to a minute and up required for larger or thicker walled parts. Evaluate part sticking, wall distortion, flatness or dimensions for proper cooling time setting. Evaluate additional cooling time or wall draft for part sticking problems.

Screw recovery: A screw recovery speed of 100 rpm is typically adequate to provide good mixing and fluxing of compounds. Most of the time a backpressure in the range of 50 to 100 psig hydraulic pressure should provide a good melt puddle with minimal screw and barrel wear. Some backpressure is desirable to stabilize the process and provide shot to shot consistency.

Barrel purge: A Fractional Melt HDPE (Marlex® HHM 50100) or commercial high temperature purge compound is acceptable.

Off-gas products produced during processing can be irritants to the mucous membranes, therefore adequate ventilation is recommended.

www.solvay.com
SpecialtyPolymers.EMEA@solvay.com | Europe, Middle East and Africa
SpecialtyPolymers.Americas@solvay.com | Americas
SpecialtyPolymers.Asia@solvay.com | Asia Pacific

Safety Data Sheets (SDS) are available by emailing us or contacting your sales representative. Always consult the appropriate SDS before using any of our products. Neither Solvay Specialty Polymers nor any of its affiliates makes any warranty, express or implied, including merchantability or fitness for use, or accepts any liability in connection with this product, related information or its use. Some applications of which Solvay’s products may be proposed to be used are regulated or restricted by applicable laws and regulations or by national or international standards and in some cases by Solvay’s recommendation, including applications of food/feed, water treatment, medical, pharmaceuticals, and personal care. Only products designated as part of the Solviva family of biomaterials may be considered as candidates for use in implantable medical devices. The user alone must finally determine suitability of any information or products for any contemplated use in compliance with applicable law, the manner of use and whether any patents are infringed. The information and the products are for use by technically skilled persons at their own discretion and risk and does not relate to the use of this product in combination with any other substance or any other process. This is not a license under any patent or other proprietary right. All trademarks and registered trademarks are property of the companies that comprise Solvay Group or their respective owners.

© 2015 Solvay Specialty Polymers. All rights reserved. D 04/2014 | R 01/2015 | Version 1.0